The cyclopentene rings are non-planar and have a partly opened envelope conformation. Calculations for relevant planes are given in Table 3. The flap angles, β, for the two crystallographically non-equivalent cyclopentene rings are 26 and 19° respectively for rings defined by $C(1)$ to $C(5)$ and $C(6)$ to $C(10)$. These values are comparable with the angle of 21.9 (2) ${ }^{\circ}$ in perfluorocyclopentene (Chang \& Bauer, 1971) but smaller than that of $29(1)^{\circ}$ in cyclopentene (Davis \& Muecke, 1970). Average corrected bond lengths for the cyclopentene rings are similar to those of perfluorocyclopentene (shown in square brackets); $-\mathrm{C}=\mathrm{C}-=$ 1.326 (5) [1.342], $=\mathrm{C}-\mathrm{C}-=1.497$ (4) [1.510 (9)], $-\mathrm{C}-\mathrm{C}-=1.524$ (4) $[1.539$ (13) $\AA]$. The $\mathrm{C}-\mathrm{F}$ lengths are comparable with those in perfluoro-1,2-3,4-5,6triethanobenzene (Cobbledick \& Einstein, 1976). There are no particularly short intermolecular contacts.

We acknowledge the support of the National Research Council of Canada and thank Dr W. R. Cullen for his gift of the crystals.

References

Beagley, B. (1973). Molecular Structure by Diffraction Methods. Vol. 1, Senior Reporters G. A. Sim \& L. E. Sutton, p. 74. London: The Chemical Society.
Chang, C. H. \& Bauer, S. H. (1971). J. Phys. Chem. 75, 1685-1690.
Cobbledick, R. E. \& Einstein, F. W. B. (1976). Acta Cryst. B32, 1908-1909.
Davis, M. I. \& Muecke, T. W. (1970). J. Phys. Chem. 74, 1104-1108.
Einstein, F. W. B. \& Jones, R. D. G. (1972). Inorg. Chem. 11, 395-400.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Tretteberg, M. (1966). Acta Chem. Scand. 20, 17241726.

2-Formylamino-2-oxo-5,5-dimethyl-1,3,2-dioxaphosphorinane

By T. Stanley Cameron*
Chemistry Department, Dalhousie University, Halifax NS, Canada

and Janina Karolak-Wojciechowska
Technical University, Łodz, Poland

(Received 20 December 1976; accepted 18 March 1977)

Abstract

C}_{6} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{P}, M_{r}=193 \cdot 1\), orthorhombic, Pbca, $a=10 \cdot 17$ (1), $b=10.01$ (1), $c=18.36$ (2) \AA, Z $=8, D_{c}=1.372, D_{m}=1.360 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu} K c)=24.7$ $\mathrm{cm}^{-1}, \dot{\lambda}=1.5418 \AA$. The structure was solved by the heavy-atom method and refined to $R=0.08$. The molecule has the chair configuration with the phosphoryl O atom equatorial. This atom forms a hydrogen bond to the amide group of an adjacent molecule.

Introduction. Most of the information on the preferred configuration of the P substituents in the chair form of 2-R-2-oxo-1,3,2-dioxaphosphorinanes suggests that the molecule with the O atom equatorial ($\mathrm{I} a$) rather than axial (Ib) is thermodynamically more stable (White, McEwen, Bertrand \& Verkade, 1971). However, when $R=\mathrm{NMe}_{2}$ this O is axial (Wadsworth, 1977), although

[^0]it is equatorial when $R=$ NHPh (Cameron \& KarolakWojciechowska, 1976). The present structure, where $R=$ NHCHO, has been examined to see if a strong electronegative group at the N atom has any influence on the P configuration.

(Ia)

(Ib)

The compound was prepared by A. Zwierzak (Technical University, Łodz). The crystal system and cell dimensions were determined from Weissenberg photographs; systematic absences $0 k l, k=2 n+1 ; h 0 l$, $l=2 n+1 ; h k 0, h=2 n+1$ uniquely determined the space group Pbca. 1030 independent reflexions were visually estimated from equi-inclination Weissenberg
photographs ($h 0 l-h 8 l$) and for interlayer scaling $(0-1 k l)$. The data were corrected for Lorentz and polarization effects and the interlayer scale factors were calculated by the method of Rollett \& Sparks (1960).

The position of the P atom was determined from an unsharpened three-dimensional Patterson function and the locations of the other non-hydrogen atoms were found from a subsequent F_{o} map. Refinement of this model with isotropic thermal parameters converged at $R=0 \cdot 12$. A difference Fourier synthesis calculated at this stage showed the positions of the H atoms bonded to the N and carbonyl C atoms. The methylene H atom positions were calculated and all these H atoms with isotropic temperature factors were included in a fullmatrix refinement where the other atoms had aniso-

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$
tropic temperature factors; the weights for the individual reflexions were given by $w=\left(\left|F_{0}\right|+\right.$ $\left.0.057 F_{o}^{2}\right)^{-1}$. The refinement finally converged at $R=$ 0.08 . Sheldrick's (1976) system on the Dalhousie University CDC 6400 computer was used for the calculations.

The final atomic parameters are in Table 1.* Table 2 lists the interatomic distances and interbond angles.

[^1]Table 2. Interatomic distances (\AA) and interbond angles (${ }^{\circ}$)

A prime indicates the equivalent position $\frac{1}{2}-x, \frac{1}{2}+y, z$.

	x	y	z
	x	y	
$\mathrm{P}(1)$	$1814(2)$	$2009(2)$	$675(1)$
$\mathrm{N}(1)$	$3016(5)$	$3191(7)$	$711(3)$
$\mathrm{O}(1)$	$2169(6)$	$826(7)$	$253(4)$
$\mathrm{O}(2)$	$1438(5)$	$1641(6)$	$1479(3)$
$\mathrm{O}(3)$	$642(5)$	$2778(5)$	$343(3)$
$\mathrm{O}(4)$	$4485(7)$	$1972(7)$	$1369(3)$
$\mathrm{C}(1)$	$771(7)$	$2685(9)$	$1910(4)$
$\mathrm{C}(2)$	$-490(7)$	$3116(8)$	$1517(4)$
$\mathrm{C}(3)$	$-120(7)$	$3734(9)$	$809(4)$
$\mathrm{C}(4)$	$-1464(9)$	$2018(11)$	$1429(6)$
$\mathrm{C}(5)$	$-1102(11)$	$4291(11)$	$1991(6)$
$\mathrm{C}(6)$	$4216(8)$	$3024(10)$	$1042(5)$
$\mathrm{H}(1)$	3190	4010	390
$\mathrm{H}(2)$	4972	3705	1077
$\mathrm{H}(13)$	418	4527	897
$\mathrm{H}(23)$	-929	3975	537
$\mathrm{H}(11)$	576	2351	2413
$\mathrm{H}(21)$	1380	3479	1965

$\mathrm{P}(1)-\mathrm{N}(1)$	$1.702(5)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.461(6)$
$\mathrm{P}(1)-\mathrm{O}(2)$	$1.570(5)$
$\mathrm{P}(1)-\mathrm{O}(3)$	$1.544(4)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.373(9)$
$\mathrm{N}(1)-\mathrm{H}(1)$	1.025
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.476(8)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.499(8)$
$\mathrm{O}(4)-\mathrm{C}(6)$	$1.243(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.533(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.488(9)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.488(10$
$\mathrm{C}(2)-\mathrm{C}(5)$	$1.589(11)$
$\mathrm{N}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	$2.775(7)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(1)$	$114.0(2)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	$107.5(2)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	$103.0(2)$

$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	$111.6(3)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	$112.7(3)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)$	$107.5(3)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$124.8(4)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	131.0
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{H}(1)$	101.4
$\mathrm{~N}(1)-\mathrm{H}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	$145 \cdot 2$
$\mathrm{P}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{H}(1)$	132.0
$\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	$116 \cdot 8(3)$
$\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}(3)$	$119.5(3)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.3(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$108.5(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$113.6(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$106.2(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$112.4(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	$105 \cdot 6(4)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(5)$	$110 \cdot 2(4)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$110.3(5)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(4)$	$120.8(6)$

Fig. 1. A stereoscopic projection of the unit cell.

Fig. 1 [drawn by STRPL (Cameron, 1973)] gives the packing of the molecules in the unit cell.

Discussion. The crystal is constructed from molecules with the formula $\mathrm{I} a(R=\mathrm{NHCHO})$, which are linked together to form chains parallel to \mathbf{b} with a hydrogen bond between the phosphoryl oxygen atom $\mathrm{O}(1)$ and the amide nitrogen atom $\mathrm{N}(1)$. The chains stack side by side along a with the carbonyl group of one molecule fitting between the two methyl groups of a molecule in the adjacent stack. Along \mathbf{c} the non-bonding contact between the stacks is made with the methyl and methylene groups of the phosphorinane ring (Fig. 1).

The phosphoryl O is equatorial, so the configuration at the P is apparently uninfluenced by the amido group. The $\mathrm{P}-\mathrm{O}, \mathrm{P}-\mathrm{N}$ and $\mathrm{N}-\mathrm{C}$ bond lengths of 1.461 (6), 1.702 (5) and 1.373 (9) \AA can be compared with 1.476 (10), 1.649 (10) and 1.424 (9) \AA in phenylaminophosphorinane ($\mathrm{I} a, R=\mathrm{NHPh}$) in which there is also a $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond (Cameron \& Karolak-Wojciechowska, 1976). The significant lengthening of only the $\mathrm{P}-\mathrm{N}$ bond in the present compound is probably caused by the strong electronwithdrawing carbonyl group bonded to the N atom.

The configuration and dimensions of the dioxaphosphorinane ring are normal. The angle between the planes through $\mathrm{P}(1), \mathrm{O}(2), \mathrm{O}(3)$ and $\mathrm{O}(2), \mathrm{O}(3), \mathrm{C}(1)$ and $\mathrm{C}(3)$ is $32 \cdot 1^{\circ}$ and the angle between this second plane and that through $\mathrm{C}(1), \mathrm{C}(2)$ and $\mathrm{C}(3)$ is $65 \cdot 3^{\circ}$. The corresponding interplane angles in (Ia) $(R=$ NHPh) are $34 \cdot 2$ and $55 \cdot 6^{\circ}$. The two $\mathrm{P}-\mathrm{O}$ single bonds
of 1.570 (6) $\AA[O(2)]$ and 1.544 (6) $\AA[O(3)]$ are not significantly different and are within the normal range ($1.522-1.584 \AA$) for this type of compound (Gałdecki \& Karolak-Wojciechowska, 1973). There is considerable spread in the $\mathrm{C}-\mathrm{C}$ interatomic distances, particularly the $\mathrm{C}-\mathrm{Me}, 1.488$ (11) $\AA[\mathrm{C}(4)]$ and $1.589(10) \AA[\mathrm{C}(5)]$. The methyl groups do not pack very closely (Fig. 1) and from the Fourier map it is clear that the methyl C atoms are strongly vibrating with ill defined positions.

We thank the Polish Ministry of Education and Technology for a scholarship to JK and the University of Dalhousie for computing facilities.

References

Cameron, T. S. (19,73). New Univ. of Ulster, Internal Report I.
Cameron, T. S. \& Karolak-Wojciechowska. J. (1976). Acta Cryst. B32, 492-496.
Galdecki, Z. \& Karolak-Wojciechowska, J. (1973). Łodz. Tow. Nauk. Wydz. III, Acta Chim. 115, 5557.

Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst. 13, 273-274.
Sheldrick, G. (1976). Personal communication.
W ADSWORTH, W. S. (1977). To be published.
White, D. W., McEwen, G. K., Bertrand, R. D. \& Verkade, J. G. (1971). J. Chem. Soc. (B), pp. 14541461.

Acta Cryst. (1977). B33, 2344-2346

1,10-Phenanthrotricyclo[4.1.1.0 ${ }^{2,7}$]heptene

By Alan C. Hazell
Department of Inorganic Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
and Richard M. Pagni and Michael Burnett
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, USA

(Received 28 March 1977; accepted 15 April 1977)

Abstract

C}_{18} \mathrm{H}_{12}\). Orthorhombic, $I b a 2, a=16.34$ (1), $b=18.64$ (1),$c=7.884$ (5) $\AA, D_{c}=1.26 \mathrm{~g} \mathrm{~cm}^{-3} . Z=$ 8. Full-matrix least-squares refinement gave $R=0.067$ for 74 parameters and 409 significant reflexions $|I\rangle$ $2 \sigma(I)]$. The molecular geometry is normal, and the packing similar to that for 1,8 -naphthotricyclo[4.1.1. $\left.0^{2, r}\right]$ heptene.

Introduction. The reaction of benzlde]anthracenyl anion with methylene chloride/ n-butyllithium (Pagni, Burnett \& Hazell, 1977) yielded 4,5-benzocyclohepta-[1,2,3-de]naphthalene and an isomeric compound. NMR showed the compound to possess a bicyclobutane structure and to be either 1,10 -phenanthrotricyclo[4.1.1.0 $0^{2,7}$]heptene (I) or 1,9-anthrotricyclo-

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32575 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

